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LONGITUDINAL WAVE PROPAGATION TESTS AND THE
EXPERIMENTAL DETERMINATION OF THE DYNAMIC
STRESS-STRAIN CHARACTERISTICS OF PURE IRONT
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Abstract—Short cylindrical specimens of Armco iron were tested at room temperature under compressive,
axial loads at strains up to 0-6% and strain rates up to 10°in./in. sec. During loading, the axial stress was
measured with a thin piezoelectric disk inserted between the specimen and the loading bar. The surface strain
was measured with conventional epoxy-backed, foil strain gages, and the strain rate deduced by differentiating
the strain~time data record. The stress, strain and strain rate data were plotted and were found to be approxi-
mated by a particular constitutive functional. The constitutive equation was then used along with the governing
equations of motion and continuity in finding a numerical solution to the problem of a one-dimensional plastic
wave propagating in a rate sensitive bar caused by an initial axial stress ¢(0, #). The numerical solutions for both
stress and strain were found to agree favorably with the stress and strains which were measured, with embedded
piezoelectric disks and strain gages, respectively, at two locations along a long iron bar wave propagation test.
Thus, a constitutive relationship found to approximate the stress—strain-strain rate data generated in a short
specimen impact test can be used to predict, with reasonably good agreement, the stresses and the strains measured
in a long bar propagation test. This agreement indicates that the approximate constitutive function is a valid
description of the flow properties of the material for the ranges of strain and strain rate observed.

INTRODUCTION

IT 1s generally accepted that most engineering materials are, to some degree, rate sensitive
that is, the materials exhibit the property in a dynamic test, of being able to support a
greater stress, at a particular value of strain, than that observed, at the same strain, in a
quasi-static test. It has been observed that some materials, such as the body-centered-
cubic metals, are highly rate sensitive at low rates of straining, while other materials,
such as the face-centered-cubic metals, are only slightly rate sensitive under the extremes
of impact loading rates [1-5]. These observations can be explained qualitatively by the
dislocation theory of plastic deformation, which attributes the strain rate effect to the
obstruction of the progress of dislocations as they migrate through the material. Body-
centered-cubic metals have been found to contain more dislocation locking mechanisms
and to possess fewer slip modes, and therefore to offer more obstruction to dislocations,
than the face-centered-cubics. It has been shown that macroscopic creep, quasi-static
stress—strain, and impact tests can all be interpreted in terms of a general strain rate
relationship that is based on a microdynamical theory of dislocations [6].

In order to determine the exact degree of rate sensitivity of a material the states of stress
and strain must be measured simultaneously at a single material point over a wide range
of constant strain rates. Even if such ideal measurements could be performed, it would
be necessary to assume that the measurements at that single point are representative of
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measurements made at every other point in the entire batch of material ; that is, that the
material is perfectly homogeneous in its properties. To compound the difficulties, any
constitutive relationship inferred from the measurements is valid only for the particular
environmental conditions of the tests. Changes in temperature and pressure can greatly
affect the stress—strain—strain rate relationship {1, 2,4, 7].

Several techniques of determining the dynamic stress—strain characteristics of metals
have been employed [1-5, 7, 8]. Each save three [3, 4, 7] has employed a technique of
measurement that does not permit independent measurements of both stress and strain.
Each has measured only strain, particle velocity, or stress at one or more locations.
Furthermore, each has assumed a one-dimensional state of stress or strain in interpreting
the properties of the material from the experimental data. Often, as in the references cited
above, conflicting interpretations of the test data for the same material can be found.
Karnes and Ripperger [3] have found from data obtained from longitudinal impact
experiments on short specimens that pure annealed aluminum is significantly strain rate
sensitive, while Bell [5] has interpreted data from a wave propagation test on a long bar
of the same material that the material is strain rate insensitive. Hauser et ¢!, [8] also found
from compressional impact tests using a split-Hopkinson pressure bar that pure aluminum
is rate sensitive.

Several reasons can be offered to explain why the above-mentioned investigators have
reached different conclusions with regard to the dynamic stress-strain characteristics of
aluminum. First, in interpreting the data, each has assumed that a one-dimensional
theory governs in the large stress rate and strain rate regions in which he gathered the data.
In such regions, the assumption of a one-dimensional theory is highly questionable.
Devault [9] has shown that the two-dimensional effect of lateral inertia becomes nnportam
in regions of high stress rate. Second, stress and strain data are not measured independentiy
in the specimen itself, as in the case of the split-Hopkinson pressure bar method i which
only strain measurements are made on the elastic pressure bars near the specimens. This
leads to averaging the stress, strain and strain rate over the entire length of the specimen
when reducing the data. Third, in the wave propagation experiments in which only strain
is measured, the average wave speed of a given level of plastic strain is deduced from the
strain-time data at several locations along the bar and used to calculate the stress, assuming
the material to be strain rate independent. Analysis of the data obtained in the latter type
of experiment presupposes that the strain wave front profile is a unique property of the
constitutive equation. However, Ripperger and Watson [10] have shown from their
theoretical calculations, using both rate independent and rate dependent constitutive
equations in the one-dimensional theory, that very nearly the same wave front profile
can be obtained for materials only mildly strain rate sensitive, at low strain rates and
stress rates where a one-dimensionai theory is valid.

It is implied in the above paragraphs that stress, strain and strain rate must be measured
in the specimen itself in order to obtain data that will allow the determination of the
constitutive equation of the material. Furthermore, one must take into consideration any
departures from whatever theory is used in interpreting the data. Assuming lateral inertia
effects to be negligible in regions of high stress rates and strain rates which are necessary
to test slightly rate sensitive materials for strain rate sensitivity can lead to serious errors
in data interpretation.

The above-mentioned problems are not so difficult whenever highly rate sensitive
materials such as Armco iron are tesied, for the rate sensitivity is obvious even at very
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low strain and stress rates. However, in determining the stress—strain characteristics at
the higher rates, the problems concerning lateral inertia become great regardless of the
degree of rate sensitivity of the material. In addition, this author has found that whenever
a material is assumed to be highly strain rate sensitive, the calculated, theoretical wave
front profiles are greatly affected by the functional form and degree of rate sensitivity of
the constitutive equation and by the initial conditions used in the calculations [11]. There-
fore, meaningful comparisons of both stress and strain data taken from wave propagation
experiments can be made with the stresses and strains calculated using a one-dimensional
theory and the experimentally determined constitutive equation and the measured initial
stress condition, provided the stress and strain rates are not large.

It is the purpose of this paper to show that either short specimen impact tests or long
bar propagation tests can be employed to obtain the dynamic stress—strain characteristics
of a highly rate sensitive material, such as Armco iron, provided both the stress and the
strain are measured directly in the specimen at low stress and strain rates. Furthermore,
it is the purpose of this paper to show that the experimentally determined constitutive
equation can be used to predict the stresses and strains propagated along a long bar of
the material by obtaining a numerical solution to the problem of a one-dimensional wave
propagating in a visco-plastic bar as proposed by Malvern [12].

The experimental technique employed in this investigation had been used previously
to measure the dynamic stress-strain characteristics of short cylinders of aluminum at
normal environmental conditions by Karnes and Ripperger [3], of copper at pressures
up to 100 Ksi by Chalupnik and Ripperger [4], and of copper at temperatures up to
1000°F by Watson and Ripperger [7]. This method allows the measurement of all three
important quantities—stress, strain and strain rate at essentially the same material location.
This author extended the technique used to test the short specimens to measure stress and
strain in a long bar propagation test by embedding a piezoelectric disk in the long bar.
This is similar to the technique reported by Shea [13] who used an embedded disk to
obtain dynamic stress-strain data for lead. However, Shea did not measure the stress at
the impact end or the longitudinal strains as this author did. Shea was able to predict the
stress at one location and the circumferential strains at several locations using a one-
dimensional stress theory that incorporated lateral inertia and strain rate dependence.

EXPERIMENTAL METHOD

The experimental method used in the dynamic testing of the short specimens is a varia-
tion of the split-Hopkinson pressure bar technique. However, this variation of the technique
does not require the critical assumption of uniformity of stress, strain and strain rate over
the entire length of the specimen, an assumption which is necessary in reducing the raw
data taken from a split-Hopkinson bar experiment.

This variation of the split-Hopkinson bar technique includes the use of a thin, calibrated,
piezoelectric (X-cut quartz) crystal, which is sandwiched between a hardened steel loading
bar and the softer specimen, in measuring the average stress over the cross section of the
specimen (Fig. 1). On the surface of the specimen, very near the quartz crystal, is mounted
an electrical resistance strain gage for measuring the axial strain. The slope of the strain vs.
time record is the strain rate. It is assumed that the stress, strain and strain rate are
measured at essentially the same material point. It is further assumed in the data reduction
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F1G. 1. (A) Schematic of the apparatus for short specimen impact test. (B) Schematic of the alterations
in the set-up (A) required for a long bar propagation test.

that: (1) the stress is uniform and axial over the cross section, {2) the difference between
the stress at the crystal and the stress on the cross section beneath the strain gage is in-
significant, (3) the surface strain is representative of the axial strain at every point on the
cross section beneath the gage, and (4) lateral inertia effects on the axial stress are negligible.
Arguments in support of each of these assumptions have been made elsewhere [3, 4, 11]
but will be outlined in the following paragraphs.

To initiate a typical dynamic test on a short, metal specimen, a flat-nosed hardened
steel projectile is propelled along the evacuated barrel of an air gun and is allowed to
impact the hardened steel loading bar, one end of which is positioned inside the gun barrel
near the muzzle. The impact gives rise to an elastic stress wave, which propagates along
the loading bar, through the quartz crystal, and into the specimen. As the stress pulse
passes through the quartz crystal into the specimen, a stress exceeding the static yield
stress of the material is impressed on the front face of the test specimen, forcing it to be
strained into the plastic range. During the plastic deformation, the value of the average
stress over the cross section of the specimen is measured by means of the quartz disk which
generates an electrical charge proportional to the average stress over the cross section.
The charge is then collected on a capacitor and the voltage across the capacitor is measured.
It can be shown that the effect on the stress wave due to the presence of the quartz disk is
negligible, if the thickness of the disk is small compared to the wavelength of the stress
pulse. For a 0:020 in. disk such as that used in these tests the calculated effect is to increase
the rise time of the stress pulse by only a microsecond.
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The quartz crystal-capacitor system is calibrated for stress by replacing the specimen
with a hardened steel load cell calibrated in a static test, and by allowing an elastic wave
to propagate through the load cell. The strain measured on the surface of the load cell
together with its stress—strain curve is then used to calibrate the quartz disk. A calibration
test record is shown in Fig. 2. The system calibration was found to be 26,500 psi/ V.

Very near the quartz crystal (§in. for 0-50 in. dia. specimen) a foil, resistance strain
gage is attached in order to measure the axial surface strain near the disk. The measured
value of surface strain at this location is assumed to be representative of the average
axial strain over the material cross section beneath the strain gage. This assumption is
reasonable from material continuity considerations if after the test, the faces of the extreme
ends of the specimen are found to be parallel and no local barreling is evident along the
length of the specimen. Although the strain gage and the load transducer are not at the
exact same location along the length of the specimen, it can be shown that only in regions
of very large time derivatives of stress and of very large strains, is the spatial derivative of
stress do/0x large. In such regions, the small difference in spatial location does give rise
to appreciable error. For dynamic testing of this type in which the stress wave has traveled
along a long loading bar and has undergone the subsequent dispersion of its high frequency
components, it can be shown that the stress rates are not of sufficient magnitude to cause
large spatial errors except very near the wave front. Since stress vs. time is measured, it is
a simple matter to limit the selection of stress—strain data to regions of small stress rate.

Errors due to antisymmetric loading were minimized by careful alignment of the
loading bar projectile and loading bar specimen interfaces and by use of machine-lapped
interfaces. A number of dynamic tests were performed to check the accuracy of alignment
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Fi1G. 2. Quartz crystal calibration record.
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and symmetry of loading by separately measuring the strain on diametrically opposed
positions at a particular material cross section. For well aligned bars, the strain records
are nearly identical. The stress—time record also provides a check on the alignment during
each test. This author has found that an incorrect alignment causes the stress—time record
to have a greatly increased rise time. A rise time of 5 usec or less usually accompanies
identical strain—time records of the opposing strain gages.

Radial inertia effects

The question always arises in tests of this type as to whether or not the assumptions
of one-dimensional stress and of negligible radial inertia effects on the axial stress are valid.
In view of the type of loading and the geometry (the wavelength of the axial stress pulse is
greater than the diameter of the specimen), the first assumption is reasonable from a
theoretical view; however, radial inertia effects on the axial stress are predicted to be
significant beyond a certain loading rate. Devault [9] has shown that it is inherently
difficult to separate strain rate effects from radial inertia effects in regions of high stress
rate. Hunter and Davies [14] have also shown that significant radial inertia effects are to
be expected in regions where the time derivative of strain rate is large. This author has
observed from the stress and strain records of the tests reported here that the regions of
large time derivatives of strain rate occur at times of large stress rate. In tests of this type.
it is in these regions of large stress rate in which one must reject the data in order that
Co/Cx be negligible (page 1161). Therefore, this author assumes radial inertial effects to be
negligible in the regions where the raw data points were selected, regions in which
cao/0x ~ 0.

Specimen preparation

The specimen materials were furnished by the manufacturer in 3 in. rounds, which
were turned down to }in. rounds in a lathe. The rounds were then cut off to 1 in. lengths
and faced off in a lathe. The 1 in. lengths were then annealed in an evacuated furnace for
1 hr at 1500°F and allowed to furnace cool. Each specimen was then lapped flat on each
end and prepared for the attachment of the strain gages. Two § in. epoxy-backed strain
gages were attached, diametrically opposed, onto each specimen ¢ in. from one end.

A chemical analysis of random samples of the specimen material, Armco iron, was
obtained and revealed the following impurities : 0-02 % carbon, 0-0129; sulfur and 0-008 9,
phosphorus. Metallograph measurements revealed that there were an average number of
600 grains/mm? for a typical annealed specimen.

Test procedure and datu selection

The outputs of the stress and strain circuits were connected to a dual-beam, 10 MHz
oscilloscope and the oscillograms recorded on Polaroid film. The oscilloscope was triggered
by the output voltage of a small piezoelectric accelerometer attached to the surface of the
loading bar which responded to the passage of the stress wave. In this way the oscilloscope
was synchronized to the event of the stress wave entering the quartz crystal. A typical stress
and strain vs. time record taken from the Polaroid photograph and enlarged is shown in
Fig. 3. One observes from the figure that during the passage of the wave front the stress
rate and rate of change of strain rate are quite large (6 ~ 10'° psi/sec, & >~ 3 x 107 in./in.-
sec?); however, about 10> sec after the passage of the wave front both & and & are very
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FiG. 3. Typical records of stress and strain vs. time taken from a dynamic test of a shirt specimen.
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nearly zero. It is in this region that radial inertia effects and stress gradients are small and
where the data for this investigation were selected. The values for the two data points in

Fig. 4are: & ~ & ~ 0, ¢ = 65,200 psi, ¢ = 0-5 per cent and ¢ = ¢, = 300 in./in.-sec.

The data from the short specimen tests are plotted in Fig. 4 in which stress is plotted vs.
strain for several strain rates. Also shown on the figure is the quasi-static curve taken from
a test in which a hydraulic loading machine was used. The data points for the o vs. ¢ at
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& = lin./in.-sec were obtained similarly. Since the tests were destructive and the strain
rate varied in each test, several specimens had to be tested at each impact velocity.
Altogether, ten tests were performed on short cylinders of Armco iron at strain rates up
to 10° in./in.-sec.

Long bar tests

In a long bar test, the hardened steel back bar used in the short specimen tests is replaced
by a long bar of specimen material to which a quartz disk and strain gages are attached.
Thus, the short specimen and the back bar of specimen material form a long bar of
specimen material with an embedded quartz disk [Fig. 1(b)]. During an impact test each
quartz crystal and adjacent set of gages yield the stress and strain-time data at essentially
the same location. This author found the effect of the embedded quartz disk on the stress
wave to be negligible provided the specimen and back bar were properly aligned and the
interfaces properly lapped so that no gaps existed to cause unloading reflections.

The results of a typical long bar test on iron are shown in Fig. 5 for the two strain—time
records of the strain gage stations positioned at 0-125in. and 1-125 in. from the loaded
end, and in Fig. 6 for the two stress—time records of the outputs of the quartz disks,
positioned at 0-0in. and 1.0in. from the loaded end. Each strain record shows a region
of high strain rate at the wave front followed by a region of lower strain rate. The level of
strain at the wave front is 0-2 per cent or twice the static yield strain. These records verify
the prediction of a small amount of plastic strain propagating at the elastic wave speed
by the rate dependent theory of Malvern [12]. The high frequency Pochhammer—Chree
oscillations are evident in the first stress record. The stress records show a region of very
short rise time and high stress rate at the wave front followed by a region of much lower
stress rates. A quantitative comparison of the long bar stress, strain and strain rate data is
consistent with the data taken from the short specimen tests as demonstrated in Fig. 4
in which the long bar data of this test are plotted along with the short specimen data.

THEORY

The equations used in the mathematical description of a one-dimensional stress wave
propagating in a rate sensitive material are those which were introduced by Malvern [12].
One dimensional theory was applicable because of the magnitudes of strains, strain rates
and stress rates which were present in the tests. Higher rates would require the use of a
two- or three-dimensional theory with all of the complications of programming the
equations not to mention those of determining which constitutive relations, what boundary
conditions, and what yield conditions to assume [15-17]. Incorrect use of assumptions of
these quantities are likely to cause greater errors in solution than a simpler theory.

The governing equations of motion and of continuity are:

A AN
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Fic. 5. Typical records of strain vs. time at two locations along a long bar during a propagation

test. Distance between calibration dots represents 1-73 per cent strain. Lower trace is for gage

at 0-125 in. from impact end. Upper trace is for gage at 1125 in. from impact end. Horizontal
scale is 10 u sec per main division.
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FiG. 6. Typical records of stress vs. time at two Jocations afong a long bar during a propagation

test. Distance between calibration dots is 53,000 psi (top) and 47,400 (bottom). Horizontali scale

is 10 p sec per main division. Upper trace is for crystal 0-0 in. from impact end. Lower trace is for
crystal at 1-0 in. from impact end.
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where x is the Lagrangian coordinate of a material point originally a distance x from the
loaded end, ¢ is the axial stress, p is the original mass density, v is the particle velocity
and ¢ is the strain. The strain is assumed to be comprised of two parts—the elastic part &g
and the plastic part ¢,—such that

&€ =¢ég+ep;
therefore,
de Oeg Oty
i E—i-?{. (3)
It is assumed that
385 1 do
% T Ea @
in which E is Young’s modulus and
0
=2 = g0, 9) 5)

The latter is the so-called “g” function which must be determined from experimental
data. Equations (3}<(5) can be combined to form

— == =180, ¢), (6)

which is the constitutive equation. Equations (1), (2) and (6) form a hyperbolic set of first
order partial differential equations which can be solved by means of the method of
characteristics [11, 12]. After applying the method of characteristics, a new set of character-
istic differential equations emerge which are valid along certain characteristic directions.
These are:

Differential equation

Characteristic equation for characteristic curves
do—pCydv = —g(o,e)dt dx = Co dt
do+pCodv = —glo, ¢)dt dx = - C,dt (7)
do—Ede = —g(o,e)dt dx =0

where C, = (E/p)*. The characteristic equations are usually nonlinear because of the non-
linear character of g(o, ¢). Although few closed form solutions are attainable for these
equations, they are easily programmed for a digital computer after the usual finite difference
approximations for the derivatives have been made. The ease of programming is due to the
fact that the characteristic curves are straight lines in the x~¢ plane (Fig. 7). The only
difficulties which arise are due to the fact that finite differencing the characteristic equations
yields a set of three nonlinear algebraic equations to be solved at each point (x, ) in the
characteristic plane for o, ¢ and v. The problem is thus reduced to solving for the roots
of a set of three nonlinear, algebraic equations at each point in the characteristic plane.
In the program, a scheme employing a predictor-corrector, iterative procedure is followed
at each point until a predicted set of values of g, ¢, v agree with a previously predicted set
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to a certain preset number of digits. There is no problem of computation along the line
x = () since the stress is defined on that boundary. However, along the line x = Cqt the
following jump conditions must be employed.

Ao = —pCuAr
Av = —CyAe

8

where A denotes a jump in value of ¢, ¢ and v after arrival of the elastic wave front. These
two jump conditions result from equating impulse to change of momentum for the
traversing of an element of the bar by the shock wave and from a consequence of the
continuity of displacement across the shock, respectively. These conditions allow the
computation of ¢, ¢ and v along the elastic wave front so that points in the interior of the
mesh in the x— plane can be determined.

The initial conditions are

o(x,0) = v(x,0) = &(x,0) =0 x>0
and the boundary condition is
o0,0)=f( =0

which is a function which approximates the stress vs. time record at the first quartz crystal
location at the impact end of a long bar in a wave propagation test.

Numerical solution

The computer program written for the solution of the nonlinear algebraic equations
which resulted from the finite differencing of equation (9), included a variable mesh size
scheme [10, 18]. Att = 0, and for short times thereafter, the derivatives of all three variables
are quite large. To minimize discretization error the program started witha At = 107 sec
or Ax = 2x 10 %in.; later in time these sizes were changed to Af = 5x 1077 sec or
Ax = 1 x 107! in. when the time derivatives were greatly reduced in magnitude.
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Determination of the *'g” function

In order to employ the data plotted in Fig. 4 to predict the propagation of a plastic
stress wave in a long bar, the data must be expressed in a functional form. Several in-
vestigators have proposed particular functionals in describing the rate sensitivity of
certain materials. Some of these are listed below in which the rate sensitivity is expressed
by the “g” function [Note: é, = é = g(o, &) for ¢ == 0 from equation (6)] in which & is the

glo, €) Domain Investigator
K(og—oay) o >0, Sokolovsky [19]
K(o —a) 6>a Malvern {12}
K(s/5)" 6>a Chiddister [2]
K[Lf"] 6>d Chalupnik [4]
G

value of stress at strain ¢ in a quasi-static test, g, is the static yield stress and both K and
n are material parameters which depend only on environmental conditions such as ambient
temperature or pressure. In describing the data, one attempts to determine values for the
parameters, K and n, which permit the functional form to provide the best fit to the data.
Each of the functional forms was tried in an attempt to describe the data shown in Fig. 4.
The form which provided a good fit to the data is the fourth one above proposed by
Chalupnik. The functional is of such a form that if log, [(¢ —5)/6] is plotted vs. log,, €,
the data points lic on a straight line, the slope of which yields » and the intercept of which
yields K. The data from Fig. 4 were plotted on such a log plot (Fig. 8). As Fig. 8 shows, the
data points do not lie along a straight line ; however, they do lie inside a linear band. Thus,
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this functional form could be used as a first approximation to the constitutive equation
for the material. If the dashed line inside the linear band is arbitrarily selected as the line
along which the data points are assumed to lie, the values for K and n can be calculated.
These values are K = 50sec™ ' and n = 5-2. The values for K for the upper and lower lines
forming the linear band are K = 25sec ™! (upper) and K = 100 sec ™! (lower).

Once the constants K and n are obtained, the constitutive equation can be numerically
integrated to yield stress—strain curves for constant strain rates. Thus for

& = A = constant
then
£ = At

and the constitutive equation

can be written as

de B o—a(it) |"
dt (3 K[_ (A1) ]) ©)

which can be numerically integrated for values of stress ¢ at each strain ¢ for the given
strain rate A. These curves were calculated for several values of K. Curves for two of these
values K = 50sec™! and 25sec™ ' are superposed on the experimental data in Fig. 4.
Neither of the two sets of curves matches the data exactly, the curves for K = 25sec ™!
fitting the data better at the higher strain rates and K = 50 sec ™! fitting the data better at
the lower strain rates.

COMPARISON OF THEORETICAL PREDICTIONS
WITH EXPERIMENTAL OBSERVATIONS

The “g” function obtained from the short specimen tests was inserted into the program
along with numerical values for Young’s modulus and the density of iron. The boundary
condition for ¢(0, t) for t = 0 used in the program was taken from the stress record at
x = 0 from a long bar test. In Fig. 10 the dashed curve, which is an approximation to the
experimental stress record at x = 0, is used as the boundary condition. The programming
was greatly simplified by assuming the stress boundary condition to be a step function
followed by a polynomial function of time.

The numerical solutions for strain and stress for three values of K are shown super-
posed on their experimental counterparts in Figs. 9 and 10 respectively. The general overall
agreement between experiment and theory is quite good for K = 50sec™ ! and n = 5-2
up to 0-8 per cent strain. All four strain curves at the second location reveal the large
strain at the elastic front, more than twice the static yield strain, and the concave upward
curvature immediately behind the wave front. Possibly, better agreement could be ob-
tained from a better functional representation of ¢(0, t); however, the constitutive law
itself, is only a first approximation to the data, the values of K and n being computed from
the dashed line (Fig. 5), for experimental data only up to 0-6 per cent strain. Better agreement
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FiG. 10. Typical long bar test data for stress vs. time at two locations. Superposed on test data are three
numerical solutions for three different values of K.

might be also attained for & > (-7 per cent by allowing K and » to be functions of & and
extending the range of strain in the short specimen tests beyond 0-6 per cent strain.

COMPARISON OF TEST DATA AND CONSTITUTIVE EQUATION
WITH OTHER INVESTIGATORS

Delay in yield

For reasons already explained, the data reported here were gathered in low stress-rate
regions. Since the region of the delay in yield phenomenon, ordinarily observed in rapid
testing of iron and steel, occurs in a high stress rate region near the quasi-static yield strain,
a region in which lateral inertia effects are expected to be large, this author did not feel
justified in drawing any strong conclusions with regard to the stress observed during the
delay in yielding phenomenon. However, this author does believe that the increase in
stress observed during the delay in yield phenomenon is partly due to material properties
and partly due to lateral inertia effects. This author did not expect the yield delay effect
to be large compared with the strain rate effect because of the large grain size of the test
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specimens. Campbell and Marsh [20] found the time delay for yielding for mild steel to
be inversely proportional to the grain size cubed. However, Elam [21] and Chalupnik {22]
did not find the stress caused by the yield delay effect to be significant as compared to the
strain rate effect. Apparently the delay in yield effect is much greater for mild steel than
for pure annealed iron. This author found the stress in the delay in yield region to be no
more than 10 per cent above the total stress level in the following region.

Outside of the region of yield delay (¢ > 0-2 per cent) the test results reported here
agree qualitatively with those reported by Elam. A quantitative comparison is not possible
since all of Elam’s data are for relatively low loading rates. Furthermore, the strain rate is
not known. Taylor and Rice [23] found that a good fit to their test data taken from plate
impact tests on Armco iron to be a pressure-dilation-dilation rate constitutive equation
similar to that proposed by Sokolovsky [19]. This equation is a first order approximation
of equation (9), the type of constitutive equation found to provide a good fit to the data
reported in this paper. Their tests were conducted at extremely high rates of straining
well beyond the strain rates reported here. Chalupnik [22] found his test data for longi-
tudinal impact tests on pure iron to be approximated by the same functional form as did
this author. However, his tests were conducted at high strain (¢ > 0-5 per cent) and strain
rate (¢ > 10%) levels, levels somewhat higher than those levels reported here. He also
chose different &(e) at ¢ = | in./in.-sec rather than at ~107° in./in.-sec as did this author.
Some of Chalupnik’s data points are replotted on Fig. 8 for log,q l{o —dle)/ale)] vs.
log,, ¢ using his values for ¢, ¢ and ¢ and the value for () at ¢ ~ 10 7 in./in.-sec that this
author used. One can see in Fig. 8 that Chalupnik’s data falls within a linear band which
has a greater slope than the linear band for the data reported in this work which lies to the
left of ¢ = 2.10% in./in.-sec. The two linear bands of data agree only at the intersection of
the bands between ¢ = 10% in./in.-sec and ¢ = 2:10° in./in.-sec where data points from
both bands have a common strain rate. However, the slopes and intercepts of the two
linear bands are vastly different. This either indicates the material behavior deviates
greatly at higher strain rates from the constitutive functional shown to fit the data at the
lower strain rates or that lateral inertia effects are significant beyond & ~ 2.10° in./in.-sec.
Hunter and Davies [14] derived a relationship for the additional axial stress X caused by
the lateral inertia effect to be T = $pa?v?& in which p is mass density, « is the bar radius,
v is Poisson’s ratio in the plastic range and & is the time rate of change of strain rate. If
one selects v = £, then for a §in. diameter iron bar ¥ is of the order of 10" . # psi. From
Chalupnik’s strain-time data, average time rates of change of strain rate from 108 sec °
to 10° sec ~? are common for strain rates exceeding 10° sec "', Thus, Z is of the order of
10°-10* psi, enough to shift the linear band up in the high strain rate region, where high
lateral inertia effects are expected. Whether or not the apparent change in rate effect
at the strain rate of 2-10% sec™ ! is a material property or a lateral inertia effect, the fact
remains that separation of strain rate effects from lateral inertia effects in high strain
rate regions is very nearly impossible for this type of test. For the higher rates of straining,
plate impact tests (one-dimensional strain tests) should provide more reliable data.

CONCLUSIONS

It can be concluded from the results of the tests and numerical solutions described in
this paper that pure iron is a highly strain rate sensitive material and that the strain rate
sensitivity within the ranges of strain, strain rate and stress rate to which this study was
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limited can be approximated by the function
de 1 0o K(E :_6) "

ot E ot

for E = 28 x10°psi, n = 5.2 and 25sec™! < K < 100sec™ !, the value of K = 50 sec™"
being the value which best fits the data. Furthermore, the function (for K = 50 sec™ ') can
be employed along with the equations of motion and continuity to predict, with reasonable
agreement, the stresses and strains occurring in a long bar of pure iron during a wave
propagation experiment.
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ABCTpaKT-—VICCNBITAIOTCH KOPOTKHME UMAKHAPHYECKue oOpasubl w3 kenesa ADPMKO, iIPH KOMHATHOR
TEMIEPATYPE, MOA BIIMAHHEM CXHMAEMON OCeBOM HArpysku, npu aedopmaunsx gocruratomux 0,69 u
ckopocTax aedopmaunn gocruraroinx 102 cex ~*, Bo Bpemsi Harpyakn, U3MEPAIOTCS OCEBOE HANPKEHUE
C NOMOILLK) ITHE3ONIEKTPHUECKOIO AMCKA, BCTABIEHHOTO MeXay OBpa3iLoM M HATPYXEHHBIM CTEPXKHEM.
MimepatoTcosepxHoctb neopMatyu ¢ MOMOLIbIO MMOKCHAOBBIX NPUCOEAHHHEHBIX TUIEHOYHBIX JATUYHKOB.
Onpenennerca ckopocth aedopmanun nyrem anddepeHUHPOBAHKS 3aNMCH AaHHBIX ans gedopmanuy ot
Bpemeny. JdatoTcs rpaduki JaHHBIX: HAOpsKeHHE—aehopManus—CckopocTs achopmanuu. OxassBaroTs
BO3IMOXHBIM ATIPOKCHMHPOBATL TIPaduKy ¢ NOMOWbIO HYACTHOIO KOHCTUTYTUBHOrO OQYHKLMOHAMA,
HUcrionb3yerca KOHCTUTYTHBHOE YPaBHEHHME BMECTE C YPaBHEHMAMU [IBHKEHHS M HENPEPLIBHOCTM AR
NOSYYEHHS MHCICHHOTO PELICHUN 3a0aud, O PACHPOCTPAHEHHIO OJHOMEPHOW MNACTH4ECKO# BOJIHBI B
YYCTBHTENBHBEM K CKOPOCTH CTEPIKHE, BCJACACTBHE HAYANbHOrO ocesoro nanpsokeduns o(0, 1), INonyuaercs
HaAMIOKALIAS CXOQUMMOCTD YMCIIEHHBIX PELUCHUil TaK NS HanpsxkeHwit Kak n aehopmauuii, BCIeACTBHE
HAUYUA THEIOMEKTPUUECKHX NHCKOB M AATHMKOB HANpPSKEHuil, BAOAb JBYX MECT HWCCNENOBAHNA
MO pacrnpoCTPAHEHMIO BOMHLI B JUIMHHOM OKENE3HOM CrepiHe. 3aTeM, MOXHO HCHOMb30BATH
KOHCTHTYTHBHYIO 3aBHCHMMOCTH, KOTOpPas anmnpOKCHMHUPYET HAHHbiC HanpaxeHue-aePoOpMalHs-CKOPOCTh
nedopMauMM, BO3IHMKLIMX NPH MCHOBITAHWM yOAapa KOpOTKux oOpasuos, Anf ONPEACieHMS, ¢ YMEPEHHO
Xopoiieil CXOAMMOCTSIO, HANPsXEeHWH W neopmauMii, M3MepAeMBbIX NPHU MCCAENOBAHHM pacnpocTpa-
HEHUS BONHBEI B JUJIMHHOM CTepXHe. DTa CXOOMMOCTh YKa3biBAaeT CBOWCTBA Te4YeHMs maTepuana,
005 IKHPOKOro Kpyra HaGmomaembix aedbopMauMil # CKOPOCTH aeopmauuy.



